Mesure du pH à l'aide d'un ensemble potentiométrique à électrode de verre : étalonnage, qualité métrologique de l'étalonnage

Lire attentivement la notice d'utilisation des mètres fournis (pH mètres potentiométriques à électrode de verre avec capteur de température et choix des étalons de pH pour l'étalonnage). Étalonner le pH mètre avec les 2 étalons classiques suivants <u>équilibrés à la température</u> du laboratoire :

- Etalon dit pH 7,00 « tampon phosphate pH	15°C - pH = 7,04	25°C - pH = 7,00
7,00 à 25°C »	18°C - pH = 7,03	$30^{\circ}\text{C} - \text{pH} = 6,99$
	20°C - pH = 7,02	$35^{\circ}\text{C} - \text{pH} = 6.98$
	22°C - pH = 7,01	•
- Etalon dit pH 4,01 « hydrogénophtalate de	15°C - pH = 4,00	25°C - pH = 4,01
potassium pH 4,01 à 25°C»	$20^{\circ}\text{C} - \text{pH} = 4,00$	$30^{\circ}\text{C} - \text{pH} = 4.01$
		$35^{\circ}\text{C} - \text{pH} = 4,02$

Consigner la température dans le compte-rendu, donner la valeur officielle du pH de ces 2 étalons en utilisant les données ci-dessus ou une table pH=f(température) pour étalons de pH (via http://www.perrin33.com/biochanalys/ph/ph_4.php par exemple).

Mesurer alors les 7 solutions de contrôle suivantes (<u>équilibrées à la température du laboratoire</u>) et relever la valeur de pH indiquée par le pH-mètre :

relever la valeur de pri indiquée par le pri-metre.		
solution 1 : contrôle dit « HCl 0,100 mol/L pH = 1,10 à 25°C »	0°C - pH = 1,10 20°C - pH = 1,10	25°C - pH = 1,10 50°C - pH = 1,10
solution 2 : étalon dit « hydrogénotartrate de potassium saturé pH=3,56 à 25°C »	20°C - pH = 3,57 25°C - pH = 3,56	30°C - pH = 3,55 35°C - pH = 3,55
solution 3 : étalon dit « acide acétique/acétate de sodium pH = 4,65 à 25°C »	10°C - pH = 4,65 20°C - pH = 4,65 25°C - pH = 4,65	30°C - pH = 4,65 40°C - pH = 4,66
solution 4 : étalon dit « phosphate pH=6,86 à 25°C »	15°C - pH = 6,90 20°C - pH = 6,88	25°C - pH = 6,86 30°C - pH = 6,85 35°C - pH = 6,84
solution 5 : étalon dit « phosphate pH=7,41 à 25°C »	15°C - pH = 7,45 20°C - pH = 7,43	25°C - pH = 7,41 30°C - pH = 7,40 35°C - pH = 7,39
solution 6 : étalon dit « tétraborate de sodium pH 9,21 à 25°C »	15°C - pH = 9,28 20°C - pH = 9,22	25°C - pH = 9,18 30°C - pH = 9,14 35°C - pH = 9,10
solution 7 : étalon dit « hydrogénocarbonate/carbonate sodique pH=10,01 à 25°C »	10°C - pH = 10,18 15°C - pH = 10,12 20°C - pH = 10,06	25°C - pH = 10,01 30°C - pH = 9,97 35°C - pH = 9,93

Relever grâce aux données ci-dessus ou une table pH=f(température) pour étalons de pH, la valeur officielle du pH des solutions 1 à 7 à la température du laboratoire.

Tracer la droite de régression pH $_{indiqué\ par\ le\ pHmètre} = f(pH)_{officiel\ relevé\ d'après\ les\ tables})$ en utilisant les résultats sur les solutions 1 à 7 et en forçant le passage par O(0,0). (Cette droite peut être appelée droite de concordance).

Analyser les résultats (en particulier les écarts, par exemple avec une règle d'écart maximum toléré, EMT, de ± 0,1). Conclure.

Bibliographie:

- http://www.perrin33.com/biochanalys/ph/ph_4.php
- documents IUPAC :

http://www.iupac.org/publications/pac/2002/pdf/7411x2169.pdf

- Quantitative chemical analysis, Daniel C. Harris, 3° édition,1991, Freeman and company.
- Normes AFNOR NF T 01-013 1974 et NF T 01-102 1973.
- Les techniques de l'ingénieur, Gérard DURAND, potentiométrie mesure du pH ou d'une concentration ; P2116 ; 10/09/ 2010
- Informations techniques aimablement fournies par la société RADIOMETER ANALYTICAL S.A.
- Fundamentals of analytical chemistry, 7th edition, Skoog, West, Holler; éditions De Boeck et Larcier, 1997, pour l'édition française
- http://www.chem.fsu.edu/chemlab/Mastering/PhosphateBuffers.htm